Agile XR
  • Welcome
  • Key Project Learnings and Reflections
  • Project Result 1
  • 1 - Guide: Agile Teamwork in Web-Based Learning
    • Chapter 1 - Agile in Software
      • 1.1 Values in Agile Software Development
      • 1.2 Principles in Agile Software Development
      • 1.3 Agile Project Management and practices
      • 1.4 Agile Mindset
    • Chapter 2 - Agile in Education
      • 2.1 Agile Compass for Education
      • 2.2 eduScrum
      • 2.3 Agora schools
      • 2.4 Agile Learning Centers
    • Chapter 3 - Agile practices for project-based learning
      • 3.1 Sprint Planning and Execution
      • 3.2 Daily Stand-Up Meetings
      • 3.3 Collaborative Learning and Projects
        • 3.3.1 Project initiation
        • 3.3.2 Project planning
        • 3.3.3 Project execution
        • 3.3.4 Project performance/monitoring
        • 3.3.5 Project closing
        • 3.3.6 Agile rituals using Mural
    • Conclusions
    • Bonus: Interviews with Agile Experts
      • Interview with Yeremi Marín, ALC Facilitator at EduCambiando, Mexico
      • Interview with Ryan Shollenberger, Co-director ALC NYC
      • Interview with Willy Wijnands, Cofounder eduScrum
  • 2 - Video Tutorials: Agile Teaching Techniques
  • Project Result 2
    • 3 - Guide: Implementing VR/XR in Team-Based Education
      • Our Approach: Design-Research
      • State of VR for Education
      • How To Choose VR Hardware and Software
      • Testing and Benchmarking VR Platforms
      • Designing Virtual Environments for VR Learning
    • 4 - Manual: Spatial.io for VR-Enhanced Teamwork
      • Terminology in XR
  • Project Result 3
    • 5 - Workshop: Designing Blended Learning Courses
      • Session 1 - Redesign Project Framing
      • Session 2 - Understanding the Student Experience
      • Session 3 - Understanding the Teacher Experience
      • Session 4 - Blended Course Plan
    • 6 - Workshop: Enhancing Existing Lessons for Blended Learning
      • Session 1 - Quick Scan
      • Session 2 - Deep Scan
    • 7 - Lesson Plan Templates for Online and Hybrid Learning
      • LP1 - Intro to AI - Elementary School
      • LP2 - Planning Skills - Lower Secondary Level
      • LP3 - Intro Radioactivity - Higher Secondary Level
      • LP4 - Berlin Wall - Upper Secondary Level
      • LP 5-10 - Lifelab Project - Upper Secondary Level
  • Project Result 4
    • 8 - Guide: Mastering Effective Distance Learning
      • Module 1: Introduction
        • What is distance learning and is it expanding so fast?
        • Online learning
      • Module 2: Methods of implementing distance learning
        • Synchronous online learning
        • Asynchronous online learning
        • Blended learning and flipped learning/classroom
      • Module 3: Classroom management in online learning
        • Class management in distance learning and how to engage students in distance learning
      • Module 4: Promoting collaborative learning in distance learning
        • Collaborative learning in distance learning
        • Problem-based learning and project-based learning in distance learning
        • Cooperative learning in distance learning
      • Module 5: How to promote social interactions in distance learning
      • Module 6: Educational technology tools for distance learning
      • References
    • 9 - Reference Guide: EdTech Tools for Interactive Teaching
      • Module 1: Introduction
        • How to get more student engagement?
        • How can we make it more collaborative?
        • What can be done with less or no teacher support? (e.g. for flipped classrooms)
      • Module 2: EdPuzzle
      • Module 3: Socrative
      • Module 4: Trello
      • Module 5: Nearpod
      • Module 6: Google Drive, Microsoft OneDrive, etc. (Shared document tools)
    • 10 - Digital Tool: EdTech Decision-Maker
    • 11 - Report: Evaluating Agile and VR/XR Teaching Pilots
      • Introduction
        • The project "Augmented Agile teamwork for hybrid learning at Schools” (AgileXR)
        • Project Result 4: Pilot and Impact Evaluation and Lessons Learned
        • Brief Theoretical Framework
        • Pilot Teaching Experiences in the AgileXR Project
      • Aim of the report
      • Method
        • Participants
        • Materials
        • Data Analysis
        • Procedure
      • Results and discussion
        • Students' perspectives
        • Teachers’ perspectives
      • Educational implications
      • Conclusions
      • Bibliographical references
      • Appendix
        • Appendix 1. Pilot evaluation student questionnaire
        • Appendix 2. Pilot evaluation teacher questionnaire
        • Appendix 3. GDPR - Family authorisation for secondary school students
  • Translations
    • 12 - Multilingual Publication Translations
Powered by GitBook
On this page
  1. Project Result 2
  2. 3 - Guide: Implementing VR/XR in Team-Based Education

Designing Virtual Environments for VR Learning

PreviousTesting and Benchmarking VR PlatformsNext4 - Manual: Spatial.io for VR-Enhanced Teamwork

Last updated 1 year ago

Spatial perception in the VR world differs from the physical environment; space is no longer needed to protect, but to give a sense of feeling, security and scale. Likewise, one can think about whether the surfaces that define the space must resemble the real world or whether they can be made more abstract.

On the Metaverse platforms, the so-called polygon and texture budget largely determines the detail and number of 3D models and thus affects the visual outfit. In the instructions for several metaverse platforms, it is desired to limit the number of polygons to 500,000 and the textures to 2K size.

Factors affecting visual quality include lighting, materials and details. Especially indoors, Global Illumination lighting (simulating light´s physical behavior) should be used to achieve realism. Materials and details also add visual interest to 3D models and views.

At the start of the project a group of students were able to design their own spaces by using a 3D software such as Blender and further bring the objects and assets to the game engine platform to allow virtual experience. First virtual spaces did not have many functionalities.

Metaverse platforms are changing and evolving rapidly. During this project the evaluation and testing phase, the most potential platform changed and instead we started to use the spatial.io platform.

In Spatial platform we were able to create a functional space for distance learning that have visual and functional qualities and support learning. Design focuses on the size of the spaces, creating an interesting landing area and spaces for different purposes, like lecture space and spaces for team work or one to one discussions when the space audio can be controlled.

Image: Coralie Island has been created in Spatial by Pedcharat Cheremnykh Coralie Island!!!!

Image: Saara Myllylä´s Early Dusk Gathering

image: Parinaz Mohammadi´s Frozen World